Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane.

نویسندگان

  • Gilda L Mena-Benitez
  • Fernando Gandia-Herrero
  • Stuart Graham
  • Tony R Larson
  • Simon J McQueen-Mason
  • Christopher E French
  • Elizabeth L Rylott
  • Neil C Bruce
چکیده

Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum 'Xanthi') plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic adaptation of bacteria to halogenated aliphatic compounds.

The bacterial degradation and detoxification of chlorinated xenobiotic compounds requires the production of enzymes that are capable of recognizing and converting compounds which do not occur at significant concentrations in nature. We have studied the catabolic route of 1,2-dichloroethane as an example of a pathway for the conversion of such a synthetic compound. In strains of Xanthobacter and...

متن کامل

Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1.

A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a Km value below the detection limit of 0.5 microM. Instead of a hy...

متن کامل

Electrochemical Investigation of Antibacterial Laser Dye Compound in 1,2-Dichloroethane at a Platinum Electrode

Diolefinic antibacterial laser dye namely 1,4-Bis[2-(4-Pyridyl) Vinyl] Benzene (4PVB)have been investigated electrochemically using cyclic voltammetry, chronoamperometry, convolution and deconvolution voltammetry combined with digital simulation techniques at a platinum electrode in 0.1 mol / L Tetra Butyl Ammonium Perchlorate (TBAP) in  solvent 1,2-dichloroethane.  The diolefinic ...

متن کامل

Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus.

Carbon isotope fractionation during aerobic mineralization of 1, 2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of (13)C in residual 1,2-DCA was observed, with a mean fractionation factor alpha +/- standard deviation of 0.968 +/- 0.0013 to 0.973 +/- 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon...

متن کامل

Preparation of Ethylenediamine by Ammonolysis of 1,2-Dichloroethane in Nonaqueous Media

Kinetic parameters of the ammonolysis reaction of dichloroethane in nonaqueous media are studied and the optimum reaction conditions are reported. A suitable reactor for running the reaction under high pressure in the range of 50 to 500 °C is designed. Kinetic behaviours of the system is studied and other reaction parameters such as rate constant, kinetic order, and activation energy are de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 147 3  شماره 

صفحات  -

تاریخ انتشار 2008